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Abstract

The effect of internal heat generation/absorption on a steady two-dimensional natural convection flow of viscous incompressible fluid
along a uniformly heated vertical wavy surface has been investigated. The equations are mapped into the domain of flat vertical plate, and
then solved numerically employing the implicit finite difference method, known as Keller-box scheme. Effects of the pertinent parameters,
such as the heat generation/absorption paramé&gitfe amplitude of the waviness)(of the surface and Prandtl numker on the rate of
heat transfer in terms of the local Nusselt numidér,(), isotherms and the streamlines are discussed.
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1. Introduction Yao [1] and Moulic and Yao [2,3] studied the effect
of surface waviness on the natural convection boundary

The natural convection about a heated vertical wavy '@Yer. Hossain and Pop [4] investigated the magneto-hydro-
surface has received a great deal of attention due to itsdynamic boundary layer flow and heat transfer along a
relation to practical applications of complex geometries. continuous moving wavy surface. Alam et al. [5] have also
It is also a model problem for the investigation of heat studied t_he problem of free convection from awavy vertical
§urface in presence of a transverse magnetic field. On the
other hand, Hossain and Rees [6] have investigated the
combined effect of thermal and mass diffusion on the natural
convection flow of a viscous incompressible fluid along a
| vertical wavy surface. The effect of waviness of the surface
on the heat and mass flux is investigated in combination

transfer from roughened surfaces in order to understand heal
transfer enhancement. Yao [1] studied the case of uniform
surface temperature laminar free convection along a semi-
infinite vertical wavy surface. The sinusoidal wavy surface
can be viewed as an approximation too much practica
geometries in heat transfer. A good example is a cooling =" : X ; -
fin. Since cooling fins have a larger area than a flat surface, With the species concentration for a fluid having Prandtl
they are better heat transfer devices. Another example is anumber_equql to 07 Mun_|r et ‘.”ll' [7.8] investigated na'_[u_ral
machine-roughened surface for heat transfer enhancementSCnvection W'th variable viscosity and thermal conductivity
The interface between concurrent or countercurrent two- along a vertical wavy cone. Recently, Ka_blr et al. [_9] ha_lve
phase flow is another example remotely related to this studied the problem of natura! convection of fluid W|th
problem. Such an interface is always wavy and momentumtemperature dependent viscosity along a heated vertical
transfer across it is by no means similar to that across wavy surface. . L .

a smooth, flat surface, and neither is the heat transfer. The study of heat generation or absorption in moving

Also a wavy interface can have an important effect on the [!wds IS énzﬁortant n probl:jamihdsgllng .Wt'.th CfT e_rglczla:! rea_ct:)-l
condensation process. ions and those concerned with dissociating fluids. Possible

heat generation effects may alter the temperature distribu-

tion; consequently, the particle deposition rate in nuclear re-

* Corresponding author. actors, electronic chips and semiconductor wafers. In fact,
E-mail address: anwar@udhaka.net (M.A. Hossain). the literature is replete with examples dealing with the heat
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Nomenclature
C, specific heat at constant pressure :kgd*-K—1 X,y axis in the direction along and normal to the
f dimensionless stream function tangent of the surface
g acceleration due to gravity............. .ant Greek symbols
Gr Grashof number _
h heat flux coefficient o amplitude of the surface waves
k thermal conductivity ............ wh—1.K-1 B volumetric coefficient of thermal
L characteristic length associated with the wavy EXPANSION .. ... 5 _§<
SUMACE . oot m Vv stream function...................... L
NU local Nusselt number n non-dimensional similarity variable
P pressure of the fluid N2 P density of the ambient fluid .......... -3
Pr Prandtl number v kinematic coefficient of viscosity. . . . .. st
0o constant w dynamic coefficient of viscosity .. km~1.s71
[0) heat generation/absorption parameter 0 d|menS|0nIe_ss temp_eraturt_a fun(_:tlon
q heat flux at the surface W2 o(x)  surface profile function defined in (1)
w HcdadtliuAa at udic osuliaec ................. .
T temperature of the fluid in the boundary layer K Subscripts
T temperature of the ambient fluid ........... K w wall conditions
Ty temperature at thesurface................. K « ambient temperature
u,v  the dimensionless- andy-component of the x differentiation with respect to
VEIOCIEY .« oo wmrl _
4,9  the dimensionat- andj-component of the Superscript
VEIOCItY . oo wrl ! differentiation with respect tg

transfer in laminar flow of viscous fluids. Vajravelu and Had- 2. Formulation of the problem

jinolaou [10], studied the heat transfer characteristics in the

laminar boundary layer of a viscous fluid over a stretching  The boundary layer analysis outlined below allofvs)
sheet with viscous dissipation or frictional heating and in- being arbitrary, but our detailed numerical work will assume
ternal heat generation. In this study, Vajravelu and Hadjino- that the surface exhibits sinusoidal deformations. The wavy
laou [10] considered that the volumetric rate of heat genera-surface may be described by

i -3
tion, ¢”’ [W-m~2], should be R R  nnd
Y =0(x)=asin| — Q)
g — | QT —Tw), fOr7>Ts L
0, forT < Ty whereL is the characteristic length associated with the wavy
surface.

where Qg is the heat generation/absorption constant. The  Tpe geometry of the wavy surface and the two-dimen-
above relation explained by Vajravelu and Hadjinolaou [10], sjonal Cartesian coordinate system are shown in Fig. 1.
is valid as an approximation of the state of some exothermic  ynder the usual Boussinesq approximation, we consider

process and having. as the onset temperature. When the flow governed by the following equations:
the inlet temperature are not less thag they usedy”’ =

Qo(T ~ T:x). ALY @
In this paper, attention has been given to a study of the dx = 9y

natural convection flow of a viscous incompressible fluid .da =, da 1ap PR

along a heated vertical wavy surface with a distributed “35 * Y55 oo + vV + gB(T — Teo) )
heat source as given in [10] fdf > 7. Here the surface 55 55 19p ).

temperatureT,, is higher than the ambient temperature Uz +U8_§ =—;a—9 +vVa (4)
T. Using the appropriate transformations, the boundary 9T 0

layer equations are reduced to non-linear partial differential i — + — = —— V°7T + —O(T —Too) (5)
forms. The transformed boundary layer equations are solved % 99 PCp PCp

numerically using the implicit finite difference method where (%, ) are the dimensional coordinates along and
known as Keller box elimination technique [11]. The effect normal to the tangent of the surface anil v) are the

of varying the heat generation/absorption on the heat transfervelocity components parallel tez, 3), VZ(= 82/9x2 +
rate in terms of local Nusselt number as well as on the 32/3y?) is the Laplaciang is the acceleration due to gravity,
streamlines and isotherm patterns is shown graphically. p is the dimensional pressure of the flujdjs the density,
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Fig. 1. Physical model and coordinate system.
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k is the thermal conductivityC, is the specific heat at
constant pressure and= /p) is the kinematic viscosity
andu is the dynamic viscosity of the fluid in the boundary
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ing terms of smaller orders of magnitude@n, the Grashof
number defined in (7).

ou dv
420 8
8x+3y ®)
ou v ap ap 9%u
— 4+v— =—— +0,Grt/4 1 6 (9
Uz Fv % a+ ay—i—(—i—cr)az—i- 9)

0 n u n
[of u— vV— OxxU
X 8 8y XX

2

G4l 4o (14 3)8—“ (10)
0 0 1 52 320
AT 9 11
“ox dy Pr( )8 2+ 0 (11)

In the above equationBy andQ are, respectively known
as the Prandtl number and the heat generation/absorption
parameter, which are defined as
Y

Pr=—

2
’ QoL” - 172
o

uCp

It can easily be seen that the convection induced by
the wavy surface is described by Egs. (8)—(11). We further
notice that, Eq. (10) indicates that the pressure gradient

(12)

layer region. The amount of heat generated or absorbed perlong the y-direction is QGr~/4), which implies that

unit volume isQo(T — Tx), Qo being a constant, which

lowest order pressure gradient alomedirection can be

may take either positive or negative values. The source termdetermined from the inviscid flow solution. For the present

represents the heat generation wheg > 0 and the heat
absorption wherQg < 0.

The boundary conditions for the present problem are
0, 0, T=T, aty=3,=o0(%)
0, T=Tx p=pe asy— o

U=

(6)

< D

where Ty, is the surface temperatur&y, is the ambient
temperature of the fluid.

Following Yao [1], we now introduce the following non-
dimensional variables:

i 5—6
xX=—, y:y—Grl/4

L

L L?
u="LCGr vz, p=—5Gr1p

L o T —T. (7)
v=L2GrV4(h —0yit),  H=——

w Ty — T

do do gB(Ty —Too)
Ox = 7~ = 3> G =——-F—L

dr  dx v2

where 6 is the dimensionless temperature function. The
(x, y) are not orthogonal, but a regular rectangular compu-
tational grid can be easily fitted in the transformed coordi-
nates. It is also worthwhile to point out that, ) are the
velocity components parallel ta (y) which are not parallel
to the wavy surface.

Introducing the above dimensionless dependent and inde-
pendent variables into Egs. (2)—(5) following dimensionless
form of the governing equations are obtained after ignor-

problem this pressure gradientis zero. Eq. (10) further shows
thatGr—1/43p/dy is O(1) and is determined by the left-hand
side of this equation. Thus, the eliminationdi/dy from

Egs. (9) and (10) leads to

3u+ ou
u— +v—
ax ay
% 0.0y 1
=(1+0d)— — 2 13
A+od) 5z~ Tyos + 1347 (13)

The corresponding boundary conditions for the present
problem then turn into
u=v=0 6=1 aty=0
u=0, 6=0,
Now we introduce the following transformations to reduce
the governing equation to a convenient form:
v =x¥f(x.m), M 9=0(x.n) (15)
wheren is the pseudo similarity variable arydis the stream-
function that satisfies Eq. (8) and is defined by

oy oy
u=—, -—

ay dx

Introducing the transformations given in Eqg. (15) into

Egs. (13) and (11) we have

14
p=0 asy— o0 (14)

n=x

(16)

" 7 XUXUXX 12
(1+ )f *3a ff ( l+o )f +1+o§9
af’ d
=x<f/—8’; —f”%) (17)
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i(1+63)9/'+§f9/+x1/2Q9 At first it should be noted that, in absence of the
Pr 4 heat generation/absorption parameter in the flow field (i.e.,
:x(f/% _9/%> (18) Q = 0.0), we recover the problem discussed by Yao [1]
0x 0x considering the forma (x) = & sin (2zx) for Pr = 1.0.
The boundary conditions (14) now take the following The effect of Prandtl numbePr, on the rate of heat
form: transferd’(x, 0) is shown in Fig. 2 and Fig. 3 fo@ = 0.0
f(x,00= f'(x,0)=0, 0(x,0)=1 and Q > 0, respectively, whilex = 0.3. The reduced rate

/ _ _ (19) of heat transfed’(x, 0) varies according to the slope of the
f(x,00)=0(x,00)=0 7 .
wavy surface. This is due to the alignment of the buoyancy
Solutions of local non-similar partial differential equa- force ]7/(14_%2), as shown in Eq. (17), which drives the flow
tions (17), (18), subject to the boundary conditions (19), are angentially to the wavy surface. Fig. 2 shows that without
obtained by using |mp_I|C|t finite difference r_nethod devel- heat generation/absorption the rate of heat traré&far, 0)
oped by Keller [11]. This method has extensively been used and their amplitude reduce at a great extent for decreasing
recently by Hossain et al. [4-9] and hence the details of this vajues ofPr. From Fig. 3 we observe that for the influence of
method have not been discussed here. _ heat generation, the decreasing rate of heat transfer becomes
However, once we know the values of the functiband  sjower in the downstream region when Pr is small.
¢ and their derivatives, it is important to calculate the values  The effect of internal heat generation/absorption on the
of the local Nusselt numbéXu, from the following relation: rate of heat transfer from the wavy surface while: 0.3 and

_ quX Pr = 0.01 (liquid metal) is illustrated in Fig. 4. We see that
Nuy = ———— (20)
k(Ty — Tso) the rate of heat transfer from the heated surface decreases

where with the increase of the heat generation parameter. This is
Gqw=—k(-VT)y—0 (21) 04-/\,/\Pril/'g—\_/m

Using the transformation (19)u, takes the following o
form 03
Nu, (Gr/x)"Y4 = — /1 + 26/ (x, 0) (22) =02 Pr=

Finally, it should be mentioned that for the computational o %p-0i
purpose the period of oscillations in the waviness of this : : , . :
surface has been considered tosbeBut for comparison 00,0 1.0 20X 30 40 50
purpose with Yao [1], typical values af have been taken
to be 2. Fig. 2. Rate of heat transfer for different valuesRofwhile 0 = 0.0 and

a=0.3.
04

3. Resultsand discussion

03|
In this paper, The effect of internal heat generation/ab-

sorption on a steady two-dimensional natural convection goz'

flow of viscous incompressible fluid along a uniformly =

heated vertical wavy surface has been investigated using 01 P=001

the very efficient implicit finite difference method known : . . : .
as Keller box scheme [11]. Here we discuss the numerical O%,O 10 20X 30 40 50

results obtained from Egs. (17)—(19) using the method men- _ _ _
tioned above. It can be seen that the solutions are affected” o > 1?2%?_“;? wansfer for different values Rf while 0 > 0
by three parameters, namely the heat generation/absorptior% o o

parameterQ, Prandtl numbePr and the amplitude of the sl 0
wavy surfacex. So we focus our attention on the effect of 05
Q, Pr anda on the rate of heat transfer in terms of the local 1 ny)
Nusselt numbeNu, measured from the relation (22). §010 00
Since values of’(x, 0) are known from the solutions of = | 02
the coupled equations (17) and (18), numerical values of the Qs a5
local heat transfelu, (Gr /x)~1/4 from (22) are calculated
for a wide range of the axial distance variablstarting from 0060 1'0 2‘0 x 3;0 4;0 5'0

the leading edge. Numerical valuesNi, (Gr /x)~1/4 thus
obtained for different values o, Pr and« are depicted in Fig. 4. Rate of heat transfer for different values@fwhile Pr = 0.01 and
Figs. 2-5, respectively. «=0.3.
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expected, since the heat generation mechanism will increasdlow rate increases within the boundary layer. Consequently,

the fluid temperature near the surface. On the other hand, thehe velocity distribution for the case of heat generation is

presence of heat absorptio@ (< O) creates a layer of cold  higher than that of the heat absorption case.

fluid adjacent to the heated surface and therefore the heat The influence of the heat generation/absorption parame-

transfer rate from the surface increases. The amplitude of theter 9 on the isotherms profile fox = 0.2 andPr = 0.01

rate of heat transfer for heat generation case is slightly higherwhere A@ = 0.06 are shown in Fig. 7. As mentioned be-

than that of the rate of heat transfer for heat absorption fore, owing to the presence of the heat generation effect

case. (Q > 0), the thermal state of the fluid increases, causing
Fig. 5 deals with the variation of only for the heat  the thermal boundary layer to increase. In this case, in the

generation case whiler = 0.01. When the amplitude of  down stream region the temperature variation is negligible.

the wavy surface increases, near the leading edge, the ratgor heat absorption, we observe that the opposite phenom-

of heat transfer’(x,0) and its amplitude increase. But engn happens.

for increasing values of, the rate of heat transfer and its Figs. 8 and 9 depict the streamlines and isotherms for

amplitude reduce periodically. the values ofa equal to 0.0, 0.1, 0.2 and 0.3, respec-
Fig. 6 illustrates the effect of the heat generation/absorp- tively, while 0 > 0 andPr = 0.01 whereA¥ = 2.5 and

tion parameteQ, on the development of streamlines which Ay — 0.06. We observe that as the valuescofncreases,

are plotted forx = 0.2 andPr = 0.01 whereAy = 2.5. We the maximum values af decrease steadily. Finally we con-

observe that, in the case of heat generalipax = 67.6 and ¢ ,qe that for much roughness of the surface, the velocity
for heat absorption castnax= 50.0. This happens, because ¢ g flow decreases in the boundary layer. Again from

in the former case the buoyancy force increases, inducing theFig. 9 we see that for wavy surface the isotherms take the
wavy form and the amplitude of the isotherms increases if

0.10] a we keep on increasing the valuesaafFor increasing val-
83 ues ofa, the thermal boundary layer thickness slightly de-
creases.
005 2
S0
S 00
T . ; . | ; 300 0.%1\/\[
o 10 20% 30 40 50 m N AAAAANS
0
Fig. 5. Rate of heat transfer for different valuesxofrhile Q > 0 (Q = 0.5) -~
andPr = 0.01. 100
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Fig. 6. Streamlines for (a <0 (Q =—-0.4), (b)) 9 =0and (c)Q >0 Fig. 7. Isotherms for (@ <0 (Q = —-0.4), (b) 9 =0and (c)Q0 >0
(Q =0.4), respectively, whiler = 0.2 andPr = 0.01. (Q = 0.4), respectively, whilex = 0.2 andPr = 0.01.
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Fig. 8. Streamlines for (&) = 0.0, (b)e = 0.1, () = 0.2, (d)« = 0.3, while 9 > 0 (Q = 0.4) andPr = 0.01.
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Fig. 9. Isotherms for (aj = 0.0, (b)a = 0.1, (c)a = 0.2, (d)a = 0.3, while 0 > 0 (Q =0.4) andPr = 0.01.
4. Conclusions the heat absorption case. The amplitude of the Nusselt num-

ber decreases in the downstream region for both the cases.

The effect of heat generation/absorption on natural con-
vection boundary layer flow along a uniformly heated ver-
tical wavy surface has been studied numerically. New vari- Acknowledgements
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