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Abstract

The effect of internal heat generation/absorption on a steady two-dimensional natural convection flow of viscous incompress
along a uniformly heated vertical wavy surface has been investigated. The equations are mapped into the domain of flat vertical
then solved numerically employing the implicit finite difference method, known as Keller-box scheme. Effects of the pertinent par
such as the heat generation/absorption parameter (Q), the amplitude of the waviness (α) of the surface and Prandtl numberPr on the rate of
heat transfer in terms of the local Nusselt number (Nux ), isotherms and the streamlines are discussed.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

The natural convection about a heated vertical w
surface has received a great deal of attention due to
relation to practical applications of complex geometr
It is also a model problem for the investigation of he
transfer from roughened surfaces in order to understand
transfer enhancement. Yao [1] studied the case of unif
surface temperature laminar free convection along a s
infinite vertical wavy surface. The sinusoidal wavy surfa
can be viewed as an approximation too much pract
geometries in heat transfer. A good example is a coo
fin. Since cooling fins have a larger area than a flat surf
they are better heat transfer devices. Another example
machine-roughened surface for heat transfer enhancem
The interface between concurrent or countercurrent t
phase flow is another example remotely related to
problem. Such an interface is always wavy and momen
transfer across it is by no means similar to that acr
a smooth, flat surface, and neither is the heat tran
Also a wavy interface can have an important effect on
condensation process.
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Yao [1] and Moulic and Yao [2,3] studied the effe
of surface waviness on the natural convection bound
layer. Hossain and Pop [4] investigated the magneto-hy
dynamic boundary layer flow and heat transfer alon
continuous moving wavy surface. Alam et al. [5] have a
studied the problem of free convection from a wavy verti
surface in presence of a transverse magnetic field. On
other hand, Hossain and Rees [6] have investigated
combined effect of thermal and mass diffusion on the nat
convection flow of a viscous incompressible fluid along
vertical wavy surface. The effect of waviness of the surf
on the heat and mass flux is investigated in combina
with the species concentration for a fluid having Pran
number equal to 0.7. Munir et al. [7,8] investigated natu
convection with variable viscosity and thermal conductiv
along a vertical wavy cone. Recently, Kabir et al. [9] ha
studied the problem of natural convection of fluid w
temperature dependent viscosity along a heated ver
wavy surface.

The study of heat generation or absorption in mov
fluids is important in problems dealing with chemical re
tions and those concerned with dissociating fluids. Poss
heat generation effects may alter the temperature dist
tion; consequently, the particle deposition rate in nuclea
actors, electronic chips and semiconductor wafers. In f
the literature is replete with examples dealing with the h
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Nomenclature

Cp specific heat at constant pressure . . J·kg−1·K−1

f dimensionless stream function
g acceleration due to gravity . . . . . . . . . . . . . m·s−1

Gr Grashof number
h heat flux coefficient
k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

L characteristic length associated with the wavy
surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Nux local Nusselt number
P pressure of the fluid . . . . . . . . . . . . . . . . . . N·m−2

Pr Prandtl number
Q0 constant
Q heat generation/absorption parameter
qw heat flux at the surface . . . . . . . . . . . . . . . W·m−2

T temperature of the fluid in the boundary layer K
T∞ temperature of the ambient fluid . . . . . . . . . . . K
Tw temperature at the surface . . . . . . . . . . . . . . . . . K
u,v the dimensionlessx- andy-component of the

velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

û, v̂ the dimensional̂x- andŷ-component of the
velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

x, y axis in the direction along and normal to the
tangent of the surface

Greek symbols

α amplitude of the surface waves
β volumetric coefficient of thermal

expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K−1

ψ stream function. . . . . . . . . . . . . . . . . . . . . . m2·s−1

η non-dimensional similarity variable
ρ density of the ambient fluid . . . . . . . . . . kg·m−3

ν kinematic coefficient of viscosity . . . . . . m2·s−1

µ dynamic coefficient of viscosity . . kg·m−1·s−1

θ dimensionless temperature function
σ(x) surface profile function defined in (1)

Subscripts

w wall conditions
∞ ambient temperature
x differentiation with respect tox

Superscript
′ differentiation with respect toη
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transfer in laminar flow of viscous fluids. Vajravelu and Ha
jinolaou [10], studied the heat transfer characteristics in
laminar boundary layer of a viscous fluid over a stretch
sheet with viscous dissipation or frictional heating and
ternal heat generation. In this study, Vajravelu and Hadj
laou [10] considered that the volumetric rate of heat gen
tion, q ′′′ [W·m−3], should be

q ′′′ =
{
Q0(T − T∞), for T � T∞
0, for T < T∞

whereQ0 is the heat generation/absorption constant.
above relation explained by Vajravelu and Hadjinolaou [1
is valid as an approximation of the state of some exother
process and havingT∞ as the onset temperature. Wh
the inlet temperature are not less thanT∞ they usedq ′′′ =
Q0(T − T∞).

In this paper, attention has been given to a study of
natural convection flow of a viscous incompressible fl
along a heated vertical wavy surface with a distribu
heat source as given in [10] forT > T∞. Here the surface
temperatureTw is higher than the ambient temperatu
T∞. Using the appropriate transformations, the bound
layer equations are reduced to non-linear partial differen
forms. The transformed boundary layer equations are so
numerically using the implicit finite difference metho
known as Keller box elimination technique [11]. The effe
of varying the heat generation/absorption on the heat tran
rate in terms of local Nusselt number as well as on
streamlines and isotherm patterns is shown graphically.
r

2. Formulation of the problem

The boundary layer analysis outlined below allowsσ̂ (x̂)

being arbitrary, but our detailed numerical work will assu
that the surface exhibits sinusoidal deformations. The w
surface may be described by

ŷw = σ̂ (x)= α sin

(
nπx̂

L

)
(1)

whereL is the characteristic length associated with the w
surface.

The geometry of the wavy surface and the two-dim
sional Cartesian coordinate system are shown in Fig. 1.

Under the usual Boussinesq approximation, we cons
the flow governed by the following equations:

∂û

∂x̂
+ ∂v̂

∂ŷ
= 0 (2)

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= − 1

ρ

∂p̂

∂x̂
+ ν∇2û+ gβ(T − T∞) (3)

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
= − 1

ρ

∂p̂

∂ŷ
+ ν∇2v̂ (4)

û
∂T

∂x̂
+ v̂

∂T

∂ŷ
= k

ρCp
∇2T + Q0

ρCp
(T − T∞) (5)

where (x̂, ŷ) are the dimensional coordinates along a
normal to the tangent of the surface and(û, v̂) are the
velocity components parallel to(x̂, ŷ), ∇2(= ∂2/∂x2 +
∂2/∂y2) is the Laplacian,g is the acceleration due to gravit
p̂ is the dimensional pressure of the fluid,ρ is the density,
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Fig. 1. Physical model and coordinate system.

k is the thermal conductivity,Cp is the specific heat a
constant pressure andν(= µ/ρ) is the kinematic viscosity
andµ is the dynamic viscosity of the fluid in the bounda
layer region. The amount of heat generated or absorbe
unit volume isQ0(T − T∞), Q0 being a constant, whic
may take either positive or negative values. The source
represents the heat generation whenQ0 > 0 and the hea
absorption whenQ0 < 0.

The boundary conditions for the present problem are

û= 0, v̂ = 0, T = Tw at ŷ = ŷw = σ
(
x̂
)

û= 0, T = T∞ p̂ = p∞ asŷ → ∞ (6)

where Tw is the surface temperature,T∞ is the ambient
temperature of the fluid.

Following Yao [1], we now introduce the following non
dimensional variables:

x = x̂

L
, y = ŷ − σ̂

L
Gr1/4

u= ρL

µ
Gr−1/2û, p = L2

ρν2 Gr−1p̂

v = ρL

µ
Gr−1/4(v̂ − σxû

)
, θ = T − T∞

Tw − T∞

σx = dσ̂

dx̂
= dσ

dx
, Gr = gβ(Tw − T∞)

ν2
L3

(7)

where θ is the dimensionless temperature function. T
(x, y) are not orthogonal, but a regular rectangular com
tational grid can be easily fitted in the transformed coo
nates. It is also worthwhile to point out that (u,v) are the
velocity components parallel to (x, y) which are not paralle
to the wavy surface.

Introducing the above dimensionless dependent and i
pendent variables into Eqs. (2)–(5) following dimensionl
form of the governing equations are obtained after ign
r

-

ing terms of smaller orders of magnitude inGr, the Grashof
number defined in (7).

∂u

∂x
+ ∂v

∂y
= 0 (8)

u
∂u

∂x
+ v

∂v

∂y
= −∂p

∂x
+ σxGr1/4∂p

∂y
+ (

1+ σ 2
x

)∂2u

∂y2
+ θ (9)

σx

(
u
∂u

∂x
+ v

∂u

∂y

)
+ σxxu

2

= −Gr1/4∂p

∂y
+ σx

(
1+ σ 2

x

)∂2u

∂y2 (10)

u
∂θ

∂x
+ v

∂θ

∂y
= 1

Pr

(
1+ σ 2

x

)∂2θ

∂y2 +Qθ (11)

In the above equations,Pr andQ are, respectively know
as the Prandtl number and the heat generation/absor
parameter, which are defined as

Pr = ν

α
, Q= Q0L

2

µCp
Gr−1/2 (12)

It can easily be seen that the convection induced
the wavy surface is described by Eqs. (8)–(11). We fur
notice that, Eq. (10) indicates that the pressure grad
along the y-direction is O(Gr−1/4), which implies that
lowest order pressure gradient alongx-direction can be
determined from the inviscid flow solution. For the pres
problem this pressure gradient is zero. Eq. (10) further sh
thatGr−1/4∂p/∂y is O(1) and is determined by the left-han
side of this equation. Thus, the elimination of∂p/∂y from
Eqs. (9) and (10) leads to

u
∂u

∂x
+ v

∂u

∂y

= (
1+ σ 2

x

)∂2u

∂y2
− σxσxx

1+ σ 2
x

u2 + 1

1+ σ 2
x

θ (13)

The corresponding boundary conditions for the pres
problem then turn into

u= v = 0, θ = 1 aty = 0

u= 0, θ = 0, p = 0 asy → ∞ (14)

Now we introduce the following transformations to redu
the governing equation to a convenient form:

ψ = x3/4f (x, η), η= x−1/4 θ = θ(x, η) (15)

whereη is the pseudo similarity variable andψ is the stream-
function that satisfies Eq. (8) and is defined by

u= ∂ψ

∂y
, v = −∂ψ

∂x
(16)

Introducing the transformations given in Eq. (15) in
Eqs. (13) and (11) we have

(
1+ σ 2

x

)
f ′′′ + 3

4
ff ′′ −

(
1

2
+ xσxσxx

1+ σ 2
x

)
f ′2 + 1

1+ σ 2
x

θ

= x

(
f ′ ∂f ′

− f ′′ ∂f
)

(17)

∂x ∂x
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Pr

(
1+ σ 2

x

)
θ ′′ + 3

4
f θ ′ + x1/2Qθ

= x

(
f ′ ∂θ
∂x

− θ ′ ∂f
∂x

)
(18)

The boundary conditions (14) now take the followi
form:

f (x,0)= f ′(x,0)= 0, θ(x,0)= 1

f ′(x,∞)= θ(x,∞)= 0
(19)

Solutions of local non-similar partial differential equ
tions (17), (18), subject to the boundary conditions (19),
obtained by using implicit finite difference method dev
oped by Keller [11]. This method has extensively been u
recently by Hossain et al. [4–9] and hence the details of
method have not been discussed here.

However, once we know the values of the functionf and
θ and their derivatives, it is important to calculate the val
of the local Nusselt number,Nux from the following relation:

Nux = qwx

k(Tw − T∞)
(20)

where

qw = −k(n̂ · ∇T )y=0 (21)

Using the transformation (15)Nux takes the following
form

Nux(Gr/x)−1/4 = −
√

1+ σ 2
x θ

′(x,0) (22)

Finally, it should be mentioned that for the computatio
purpose the period of oscillations in the waviness of
surface has been considered to beπ . But for comparison
purpose with Yao [1], typical values ofn have been take
to be 2.

3. Results and discussion

In this paper, The effect of internal heat generation/
sorption on a steady two-dimensional natural convec
flow of viscous incompressible fluid along a uniform
heated vertical wavy surface has been investigated u
the very efficient implicit finite difference method know
as Keller box scheme [11]. Here we discuss the nume
results obtained from Eqs. (17)–(19) using the method m
tioned above. It can be seen that the solutions are affe
by three parameters, namely the heat generation/absor
parameterQ, Prandtl numberPr and the amplitude of th
wavy surfaceα. So we focus our attention on the effect
Q, Pr andα on the rate of heat transfer in terms of the lo
Nusselt numberNux measured from the relation (22).

Since values ofθ ′(x,0) are known from the solutions o
the coupled equations (17) and (18), numerical values o
local heat transfer,Nux(Gr/x)−1/4 from (22) are calculated
for a wide range of the axial distance variablex starting from
the leading edge. Numerical values ofNux(Gr/x)−1/4 thus
obtained for different values ofQ, Pr andα are depicted in
Figs. 2–5, respectively.
n

At first it should be noted that, in absence of t
heat generation/absorption parameter in the flow field (
Q = 0.0), we recover the problem discussed by Yao
considering the formσ(x)= α sin (2πx) for Pr = 1.0.

The effect of Prandtl numberPr, on the rate of hea
transferθ ′(x,0) is shown in Fig. 2 and Fig. 3 forQ = 0.0
andQ > 0, respectively, whileα = 0.3. The reduced rat
of heat transferθ ′(x,0) varies according to the slope of th
wavy surface. This is due to the alignment of the buoya
force 1/(1+σ 2

x ), as shown in Eq. (17), which drives the flo
tangentially to the wavy surface. Fig. 2 shows that with
heat generation/absorption the rate of heat transferθ ′(x,0)
and their amplitude reduce at a great extent for decrea
values ofPr. From Fig. 3 we observe that for the influence
heat generation, the decreasing rate of heat transfer bec
slower in the downstream region when Pr is small.

The effect of internal heat generation/absorption on
rate of heat transfer from the wavy surface whileα = 0.3 and
Pr = 0.01 (liquid metal) is illustrated in Fig. 4. We see th
the rate of heat transfer from the heated surface decre
with the increase of the heat generation parameter. Th

Fig. 2. Rate of heat transfer for different values ofPr while Q = 0.0 and
α = 0.3.

Fig. 3. Rate of heat transfer for different values ofPr while Q > 0
(Q= 0.1) andα = 0.3.

Fig. 4. Rate of heat transfer for different values ofQ while Pr = 0.01 and
α = 0.3.
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expected, since the heat generation mechanism will incr
the fluid temperature near the surface. On the other hand
presence of heat absorption (Q< 0) creates a layer of col
fluid adjacent to the heated surface and therefore the
transfer rate from the surface increases. The amplitude o
rate of heat transfer for heat generation case is slightly hi
than that of the rate of heat transfer for heat absorp
case.

Fig. 5 deals with the variation ofα only for the heat
generation case whilePr = 0.01. When the amplitude o
the wavy surface increases, near the leading edge, the
of heat transferθ ′(x,0) and its amplitude increase. B
for increasing values ofx, the rate of heat transfer and i
amplitude reduce periodically.

Fig. 6 illustrates the effect of the heat generation/abs
tion parameterQ, on the development of streamlines whi
are plotted forα = 0.2 andPr = 0.01 where$Ψ = 2.5. We
observe that, in the case of heat generationΨmax= 67.6 and
for heat absorption caseΨmax= 50.0. This happens, becau
in the former case the buoyancy force increases, inducin

Fig. 5. Rate of heat transfer for different values ofα whileQ> 0 (Q= 0.5)
andPr = 0.01.

(a)

(b)

(c)

Fig. 6. Streamlines for (a)Q < 0 (Q = −0.4), (b)Q = 0 and (c)Q > 0
(Q= 0.4), respectively, whileα = 0.2 andPr = 0.01.
t

e

flow rate increases within the boundary layer. Conseque
the velocity distribution for the case of heat generation
higher than that of the heat absorption case.

The influence of the heat generation/absorption para
ter Q on the isotherms profile forα = 0.2 andPr = 0.01
where$θ = 0.06 are shown in Fig. 7. As mentioned b
fore, owing to the presence of the heat generation e
(Q > 0), the thermal state of the fluid increases, caus
the thermal boundary layer to increase. In this case, in
down stream region the temperature variation is negligi
For heat absorption, we observe that the opposite phen
enon happens.

Figs. 8 and 9 depict the streamlines and isotherms
the values ofα equal to 0.0, 0.1, 0.2 and 0.3, respe
tively, while Q > 0 andPr = 0.01 where$Ψ = 2.5 and
$θ = 0.06. We observe that as the values ofα increases
the maximum values ofψ decrease steadily. Finally we co
clude that for much roughness of the surface, the velo
of fluid flow decreases in the boundary layer. Again fro
Fig. 9 we see that for wavy surface the isotherms take
wavy form and the amplitude of the isotherms increase
we keep on increasing the values ofα. For increasing val-
ues ofα, the thermal boundary layer thickness slightly d
creases.

(a)

(b)

(c)

Fig. 7. Isotherms for (a)Q < 0 (Q = −0.4), (b) Q = 0 and (c)Q > 0
(Q= 0.4), respectively, whileα = 0.2 andPr = 0.01.
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(a) (b)

(c) (d)

Fig. 8. Streamlines for (a)α = 0.0, (b)α = 0.1, (c)α = 0.2, (d)α = 0.3, whileQ> 0 (Q= 0.4) andPr = 0.01.

(a) (b)

(c) (d)

Fig. 9. Isotherms for (a)α = 0.0, (b)α = 0.1, (c)α = 0.2, (d)α = 0.3, whileQ> 0 (Q= 0.4) andPr = 0.01.
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4. Conclusions

The effect of heat generation/absorption on natural c
vection boundary layer flow along a uniformly heated v
tical wavy surface has been studied numerically. New v
ables to transform the complex geometry into a simple sh
and were used a very efficient implicit finite-differen
method known as Keller box scheme was employed to s
the boundary-layer equations. From the present inves
tion; we may conclude that, in the heat generation case
thermal state of the fluid increases, consequently the Nu
number,Nux(Gr/x)−1/4 decreases when the axial distan
variablex increases. For this case, the buoyancy force
creases that increase the flow rate in the boundary layer.
that leads to thickening the velocity boundary layer and th
mal boundary layer. The opposite phenomenon occurs
t

the heat absorption case. The amplitude of the Nusselt n
ber decreases in the downstream region for both the cas
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